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Abstract
We study the Dirac equation with a tensor potential which contains a term linear
in r and a Coulomb-like term. The eigenstates and eigenvalues are obtained
exactly. We found that the energy spectrum and the degeneracy of the levels
depend on the alignment of spin with the orbital angular momentum. For
parallel alignment, the second term in the potential makes no contribution to
the energy levels.

PACS numbers: 03.65.Pm, 03.65.Ge

The Schrödinger equation with an oscillator potential and a spin–orbit coupling was an
important tool for the nuclear shell model. Therefore, it is important to study its extension
to the Dirac equation. The relativistic harmonic oscillator has also been used for quarks
with applications in the meson and baryon spectroscopy. A special-type harmonic oscillator
potential is achieved by replacing the linear momentum operator �p, in the Dirac equation, with
�p − ir̂βU(r). Here, αi and β are the usual Dirac matrices and r̂ = �r/r. When U is a linear
function of r, one obtains an oscillator with a spin–orbit coupling term. This is called the
Dirac oscillator [1]. Such an oscillator has a strong spin–orbit term and an infinite degeneracy
[2]. Another way of introducing a harmonic potential in the Dirac equation is achieved by
mixing vector and scalar harmonic potentials. This gives a normal oscillator without the spin–
orbit coupling [3]. Kukulin et al [4] have combined these two approaches and obtained an
oscillator with independent couplings for the central and spin–orbit parts. Recently, the Dirac
Hamiltonian with harmonic oscillator potentials is used to explain the so-called pseudo-spin
symmetry in nuclear interactions [5, 6]. In [7, 8], we give some recent publications on the
application of the Dirac oscillator.

In this study, we consider the potential U as a sum of two terms: a term linear in r
and a Coulomb-like term. We show that, with this choice, the Dirac equation can be solved
exactly. We obtain the energy spectrum and the corresponding wavefunction using the so-
called Nikiforov–Uvarov (NU) method. We compare our results with the known spectrum of
the Dirac oscillator. The contribution of the Coulomb-like term is analysed.
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The time-independent Dirac equation [9] with energy E can be written as

Hψ = Eψ (1)

where

H = �α · �p + mβ + φ

is the Dirac Hamiltonian in the presence of a potential φ. In general, the potential φ may be
written as a sum of a vector, a scalar and a tensor potential in the form

φ = V (r) + βS(r) + iβ �α · r̂U(r). (2)

The Dirac equation is already studied for different choices of V, S and U [5, 6, 9, 12]. Here,
we will assume that the vector and scalar potentials are zero and U is given as

U(r) = mω · r − α

r
. (3)

The wavefunction satisfying equation (1) can be written as

ψ =
(

φ1

φ2

)
(4)

where φ1 and φ2 are the large and small components, respectively. From equation (1), it
follows that these components satisfy

(E − m)φ1 = �σ · (�p + ir̂U)φ2 (5)

and

(E + m)φ2 = �σ · (�p − ir̂U)φ1 (6)

where σi are the Pauli matrices. Multiplying equation (5) by (E + m) and using the resulting
equation in equation (6), one obtains

(E2 − m2)φ1 = [�σ · (�p + ir̂U)][�σ · (�p − ir̂U)]φ1. (7)

Using the properties of Pauli spin matrices, this equation can be expressed as

(E2 − m2)φ1 = [(�p + ir̂U) · (�p − ir̂U) + i�σ · ((�p + ir̂U) × (�p − ir̂U))]φ1. (8)

Employing the commutation relations of the operators involved and transforming to the
spherical coordinates, the last equation can be written as

(E2 − m2)φ1 =
[
�p2 + U 2 − 2

(
U

r

)
−

(
dU

dr

)
− 4

(
U

r

)
(�L · �S)

]
φ1 (9)

where

�L = �r × �p, �S = 1
2 �σ .

If we take only the linear term in U, equation (9) reduces to

(E2 − m2)φ1 = [�p2 + m2ω2r2 − 3mω − 4mω(�L · �S)]φ1. (10)

For the nonrelativistic limit, we define ε = E − m and use the relation ε � m to write
(E2 − m2) as 2mε. In this limit, equation (10) becomes

εφ1 = 1

2m
[�p2 + m2ω2r2 − 3mω − 4mω(�L · �S)]φ1. (11)

This represents a harmonic oscillator with a spin–orbit coupling term. This was called the
Dirac oscillator [1]. Let us return to equation (10) and express the operator �L · �S as

�L · �S = 1
2 (�J 2 − L2 − �S2) (12)
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where �J 2, �L2 and �S2 are, respectively, the squares of the total, orbital and spin angular
momentum operators. Taking into account the commutation relations of the operators in
equation (10), it is more convenient to express the two-component wavefunction φ1 in the
form

χ(r)

r
ϕ{l 1

2 }{jm} (13)

where ϕ{l 1
2 }{jm} are the spinor-spherical harmonics. They are constructed by coupling the

two-dimensional spinors ην with the spherical harmonics Ylµ as follows:

ϕ{l 1
2 }{jm} =

∑
µν

〈
lµ,

1

2
ν

∣∣∣∣jm

〉
Ylµην. (14)

Replacing these into equation (10), we end up with the following second-order differential
equation for the wavefunction χ :

(E2 − m2)χ(r) = −
(

d2

dr2
− l(l + 1)

r2
+ m2ω2r2 +

A

r2
− B

mω

)
χ(r) (15)

where

A = α

[
α + 1 + 2

(
j (j + 1) − l(l + 1) − 3

4

)]

B = 2mωα + 3mω + 2mω

[
j (j + 1) − l(l + 1) − 3

4

]
.

(16)

It is convenient to introduce a dimensionless variable s = mωr2 and transform equation (15)
to the following form:

d2χ

ds2
+

1

2s

dχ

ds
+

1

4s2
[W − �s − s2]χ = 0 (17)

where we have defined the following new parameters:

W = −l(l + 1) − A, � = −
[
B + (E2 − m2)

mω

]
. (18)

This equation has the form of a generalized equation of the hypergeometrical type [10]. Such
equations can be expressed as

d2y

dx2
+

τ̃ (x)

σ (x)

dy

dx
+

σ̃ (x)

σ 2
y = 0 (19)

where σ(x) and σ̃ (x) are the polynomials, at most second degree, and τ̃ is a first degree
polynomial. To solve this equation, we will follow the NU method [10]. In summary, the
method starts by taking y = h(x)g(x) and choosing an appropriate h to obtain

σ(x)
d2g

dx2
+ τ(x)

dg

dx
+ λg = 0 (20)

which is referred as the equation of the hypergeometrical type. The first factor h is assumed
to satisfy the following relations:

dh(x)

dx
= π(x)

σ (x)
(21)

where

π = 1

2

(
dσ

dx
− τ̃

)
±

√
1

4

(
dσ

dx
− τ̃

)2

− σ̃ + kσ (22)
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and

τ = τ̃ + 2π. (23)

The constant λ is defined by the relation

λ = k +
dπ

dx
. (24)

Here π is a polynomial and the parameter k is fixed to satisfy this condition. This means that
the expression under the square root must be the square of a polynomial. It is known that the
polynomial solutions of equation (20) are given by the Rodriguez formula:

gn(x) = Bn

ρ(x)

dn

dnx
[σn(x)ρ(x)] (25)

where Bn is a constant and the weight function ρ is determined by the equation

d

dx
(σρ) = τρ. (26)

In order to obtain the polynomial solutions given by the Rodriguez formula, one has to impose
the following condition:

λn = −n
dτ

dx
− n(n − 1)

2

d2σ

dx2
, n = 0, 1, 2, 3, . . . . (27)

The details of this short summary can be found in [10].
Now we go back to equation (17) and apply the NU method to solve this equation.

Comparing equations (17) and (19), we immediately see that

τ̃ (s) = 1, σ (s) = 2s, σ̃ (s) = W − �s − s2. (28)

Substituting these polynomials into equation (25), we obtain π as

π = 1

2
± 1

2
[4s2 + 4(� + 2k)s + 1 − 4W ]

1
2 . (29)

According to the method given above, there are two values for k and thus four possibilities for
π . After finding these four values, we choose the one which gives a τ function with negative
derivative. This set of functions is

k = − 1
2 (� +

√
1 − 4W)

π = 1
2 (1 +

√
1 − 4W − s)

τ = 2 − 2s +
√

1 − 4W.

(30)

Now we can combine these with equations (26) and (27) and obtain the eigenvalue equation:

2(2n + 1) + � +
√

1 − 4W = 0. (31)

Replacing the parameters � and W with the expressions given by equation (18), we arrive at
the following formula for the energy values:

E2 − m2 + B

mω
= 2(2n + 1) +

√
1 + 4l(l + 1) + 4A. (32)

First, we look at α = 0 limit. For this limit A = 0 and B = 3mω + 2mω
(
j (j + 1) −

l(l + 1) − 3
4

)
. There are two cases for the spin alignment, j = l + 1

2 (aligned spin) and
j = l − 1

2 (unaligned spin). For these cases, equation (32) gives

(E2
− − m2)

mω
= 2(N − j) + 1, for aligned spin (33)
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(E2
+ − m2)

mω
= 2(N + j) + 3, for unaligned spin (34)

where N stands for (2n + l). This is the well-known energy spectrum of the Dirac oscillator.
As can be seen from these equations, there is an infinite degeneracy for the aligned spin case
and a finite degeneracy for the unaligned spin case [1, 2].

We study equation (32) for a nonzero α for the two spin alignments. For unaligned spin
case, using A and B from equation (16), we obtain

E2
+ − m2

mω
= 2(N + j) + 3 − 4α. (35)

This coincides with equation (34) for α = 0. For the aligned spin case, the energy values show
an interesting behaviour. When A is replaced in the square root in equation (32), one obtains
1 + 4l(l + 1) + 4A = (2j + 2α)2. The contribution of this term cancels with the contribution
of B/mω on the right-hand side. In fact, B/mω reduces to (2j + 2α + 2) for the aligned
spin case. This means the energy levels for the aligned spin case do not get any contribution
from the α-dependent interaction term and the energy levels are given by the same formula
as in equation (33).

The eigenfunctions are calculated using the Rodriguez formula. First, from equation (26),
we solve ρ as

ρ(s) = 1
2 e−ssp (36)

where p = 1
2

√
1 − 4W . Replacing σ and ρ in the Rodriguez formula, we find that the

solutions g(s) can be expressed in terms of the Laguerre polynomials as

g(s)np = BnpLp
n(s) (37)

where Bnp are some constants. For the first factor φ(s), we substitute π(s) and σ(s) into
equation (21) and find that

h(s) = e− 1
2 ss

1
4 (1+2p). (38)

Expressing these in terms of r, we find our wavefunctions:

χ(r)np = Bnp(mωr2)
1
4 (1+2p) exp

(− 1
2mωr2

)
Lp

n(mωr2). (39)

At this point, one may look to the α = 0 limit. In this limit, p = � + 1
2 , and one has [11]

L
�+ 1

2
n (mωr2) = Cl

n1F1
(−n,� + 3

2 ,mωr2
)
. (40)

That is, we have the confluent hypergeometric functions or kummer functions in equation (39)
and χ(r) coincides with the wavefunctions of the three-dimensional harmonic oscillator [12].

We could add to the Hamiltonian in equation (2) a term of the form (I + β)V (r) where
V (r) is quadratic in r. This changes only the frequency of the central oscillator and the
combined model is solvable exactly in an analytical manner.

We conclude that the Dirac equation with a tensor potential containing a linear and a
Coulomb-like term is exactly solvable. The spectrum presents degeneracies. These are the
same degeneracies that are observed in the spectrum of the Dirac oscillator. That is, the
additional Coulomb-like tensor potential does not remove the degeneracies. The spectrum
of the Dirac oscillator is explained by constructing a symmetry Lie algebra in [2]. Then,
the Hamiltonian of the problem is related to the Casimir operators of the Lie algebra. This
construction is far from trivial. Here, we can only make an observation that the Hamiltonian
of the Dirac oscillator with the additional term has the same symmetry algebra.
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